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A Simple Experiment

A Simple Experiment

Suppose we have an experimental set-up consisting of a photon source, a beam splitter (half silvered
mirror) and a pair of photon detectors. We observe that photons hit each detector 50% of the time.

The simplest explanation here is that the beam splitter has a 50% chance to transmit or
reflect each photon.
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A Simple Experiment

A Simple Experiment

We modify the experiment by adding a second beam splitter and two fully reflecting mirrors. In this
modified set-up the result is non-intuitive. The photons do not hit each detector with a 50% chance.

The photons arrive at the same detector, detector 2, 100% of the time.
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A Simple Experiment

A Simple Experiment

The mathematical framework of quantum physics models the experiment in a way that
correctly predicts the observed outcomes.

The beam splitter can be model by the following operator: 1√
2

[
1 i
i 1

]
At each step, photons can be in 2 possible paths noted
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1
0

)
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0
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)
.

1 At the beginning of the experiment we know from which side photons are hitting the first beam

splitter. Meaning the state of the system is known to be path 1 =
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)
.

2 After the first beam splitter we get: 1√
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We will see later that this mean a
(
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)2
=
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= 1

2 probability for each outgoing path.

3 After the second beam splitter we get: 1√
2
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]
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)
=
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1

)
, meaning a 100% probability of

observing photons in path 2.
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A Simple Experiment

A Simple Experiment [1]

Photons are modeled as taking a superposition of both paths and physical ”gates” as operators
modifying the probabilities of measuring photons in each of their possible states.

Quantum physics can model experiment that cannot be described by classical physics.

The exponential processing power needed to model some complex quantum system led to the idea
of quantum computing.
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Mathematical Framework Hilbert space and Dirac notation

Hilbert space and Dirac Notation

The state of a n-qbit system is described by a 2n-dimensional vector in a finite dimensional complex
vector space, referred as a Hilbert space H.

Vectors from H basis are called state vectors. They represent the possible states in which qbits can
collapse when measured.

Dirac Notation

Vectors in H are written inside a ’ket’ as follow |v〉
The 2n basis vectors of H are labeled by their binary index: |00〉, |01〉, ...
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Mathematical Framework Hilbert space and Dirac notation

Dirac Notation

Single-qbit System Example

Each possible state of a single-qbit system can be written as a vector ~φ =

(
α1

α2

)
, with α1, α2 complex.

Following Dirac notation we get: |φ〉 = α1|0〉+ α2|1〉

The pure state space of a qubit can be represented by a bloch sphere.
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Mathematical Framework Hilbert space and Dirac notation

Dirac Notation

4-qbit System Example - H of dimension 4

∣∣∣∣ 010
0

≡ 2nd basis vector

≡ 0b01th basis vector, binary 0-indexed

≡ |01〉 in Dirac notation

the 4 basis vectors are therefore B = {|00〉, |01〉, |10〉, |11〉}. Any vectors in H can then be written as a
combination of vectors in B.
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Mathematical Framework Hilbert space and Dirac notation

Dirac Notation

The following Dirac notation and column vector are equivalent:

√
2

3
|001〉+

i√
(3)
|111〉 ⇐⇒



0√
2
3

0
...
0
i√
(3)


(1)

As you can see, this notation saves space when the dimension is high and the vectors are sparse.
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Mathematical Framework Operators in H

Dual vector and inner product

Dual vector

〈x | - x written inside a ’brac’

A dual vector is obtained by taking the corresponding row matrix of x and then the complex conjugate
of every element (Hermitean conjugate).

This allows writing the inner product as 〈x |y〉:

〈x ||y〉 ≡ 〈x |y〉 =

(
x1
x2

)
·
(
y1
y2

)
= (x∗1 x

∗
2 )

(
y1
y2

)
= Σ2

i x
∗
i yi

where c∗ = a− bi for c = a + bi
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Mathematical Framework Operators in H

Tensor product

Tensor product

|x〉 ⊗ |y〉 also written |x〉|y〉 or |xy〉

Stitch result matrices of multiplying each element xi in x by y :

|xy〉 = |x〉 ⊗ |y〉 =

(
x0
x1

)
⊗
(
y0
y1

)
=


x0y0
x0y1
x1y0
x1y1


Example: √

2

3
|01〉+

i√
(3)
|11〉 ⇐⇒

√
2

3
|0〉 ⊗ |1〉+

i√
(3)
|1〉 ⊗ |1〉
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Mathematical Framework Operators in H

Outer product and Quantum entanglement

Outer product:
|x〉〈y |

.
Produces an operator that acts as

(|x〉〈y |)|z〉 = |x〉(〈y |z〉) = (〈y |z〉)|x〉

A key point of quantum computing is that n-qbits systems can be described by the tensor product of n
vector spaces V (H of dimension 1) i.e. Hn = {v1 ⊗ . . .⊗ vn,∀vi ∈ V,∀i ∈ n}

quantum Entanglement

The quantum state of each particle cannot be described independently of the others.
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Mathematical Framework Operators in H

Measurement

Measurement Principle

A measurement results in the system being in the eigenstate corresponding to the eigenvalue result of
the measurement

The measurement principle is an axiom of quantum physics, you cannot prove it is true. It just seems to
match what is happening. |ψ〉 = α|0〉+ β|1〉. The measurement process alters the state of the qubit:
the effect of the measurement is that the new state is exactly the outcome of the measurement.
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Quantum Algorithm Shor’s algorithm

Shor’s Algorithm

Quantum algorithm for integer factorization formulated by Peter Shor in 1994.

The first part of the algorithm turns the factoring problem into the problem of finding the period of a
function, and may be implemented classically. The second part finds the period using the quantum
Fourier transform, and is responsible for the quantum speedup.
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Quantum Algorithm Groover’s algorithm

Groover’s Algorithm

Search algorithm in sub-linear time.
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